tlpipe.utils.multiscale

Functions

MAD(a) Median absolute deviation divides 0.6745.
convolve(a, phi) Convolve a along each axis sequentially by phi.
convolve1d(input, weights[, axis, output, ...]) Calculate a one-dimensional convolution along the given axis.
median_filter(input[, size, footprint, ...]) Calculates a multidimensional median filter.
median_wavelet_detrend(a[, level, scale, ...]) Return the detrended component (i.e., smooth component being subtracted) of the median-wavelet transfrom.
median_wavelet_smooth(a[, level, scale, ...]) Return the smooth component of the median-wavelet transform.
median_wavelet_transform(a[, level, scale, ...]) Median-wavelet transfrom.
multiscale_median_detrend(a[, level, scale]) Return the detrended component (i.e., smooth component being subtracted) of the multiscale median transfrom.
multiscale_median_flag(a[, level, scale, ...])
multiscale_median_smooth(a[, level, scale]) Return the smooth component of the multiscale median transform.
multiscale_median_transform(a[, level, ...]) Multiscale median transform.
starlet_detrend(a[, level, phi]) Return the detrended component (i.e., smooth component being subtracted) of the first generation starlet transfrom.
starlet_smooth(a[, level, phi]) Return the smooth component of the first generation starlet transform.
starlet_transform(a[, level, gen2, ...]) Computes the starlet transform (i.e.
up_sampling(a) Up-sampling an array by interleaving it with zero values.