tlpipe.timestream.ps_cal.PsCal¶
-
class
tlpipe.timestream.ps_cal.
PsCal
(parameter_file_or_dict=None, feedback=2)[source]¶ Calibration using a strong point source.
The observed visibility of a strong point source with flux \(S_c\) is
\[\begin{split}V_{ij} &= g_i g_j^* A_i(\hat{\boldsymbol{n}}_0) A_j^*(\hat{\boldsymbol{n}}_0) S_c e^{2 \pi i \hat{\boldsymbol{n}}_0 \cdot (\vec{\boldsymbol{u}}_i - \vec{\boldsymbol{u}}_j)} \\ &= S_c \cdot g_i A_i(\hat{\boldsymbol{n}}_0) e^{2 \pi i \hat{\boldsymbol{n}}_0 \cdot \vec{\boldsymbol{u}}_i} \cdot (g_j A_j(\hat{\boldsymbol{n}}_0) e^{2 \pi i \hat{\boldsymbol{n}}_0 \cdot \vec{\boldsymbol{u}}_j})^* \\ &= S_c \cdot G_i G_j^*,\end{split}\]where \(G_i = g_i A_i(\hat{\boldsymbol{n}}_0) e^{2 \pi i \hat{\boldsymbol{n}}_0 \cdot \vec{\boldsymbol{u}}_i}\).
In the presence of outliers and noise, we have
\[\frac{V_{ij}}{S_c} = G_i G_j^* + S_{ij} + n_{ij}.\]Written in matrix form, it is
\[\frac{\boldsymbol{\mathbf{V}}}{S_c} = \boldsymbol{\mathbf{V}}_0 + \boldsymbol{\mathbf{S}} + \boldsymbol{\mathbf{N}},\]where \(\boldsymbol{\mathbf{V}}_0 = \boldsymbol{\mathbf{G}} \boldsymbol{\mathbf{G}}^H\) is a rank 1 matrix represents the visibilities of the strong point source, \(\boldsymbol{\mathbf{S}}\) is a sparse matrix whose elements are outliers or misssing values, and \(\boldsymbol{\mathbf{N}}\) is a matrix with dense small elements represents the noise.
By solve the optimization problem
\[\min_{V_0, S} \frac{1}{2} \| V_0 + S - V \|_F^2 + \lambda \| S \|_0\]we can get \(V_0\), \(S\) and \(N\) and solve the gain.
Attributes
cacheable
Override to return True if caching results is implemented. embarrassingly_parallelizable
Override to return True if next() is trivially parallelizeable. history
History that will be added to the output file. iteration
Current iteration when iterable is True, None else. params_init
prefix
Methods
cast_input
(input)Override to support accepting pipeline inputs of various types. copy_input
(tod)Return a copy of tod, so the original tod would not be changed. data_select
(tod)Data select. finish
()Final analysis stage of pipeline task. next
([input])Should not need to override. process
(ts)read_input
()Method for reading time ordered data input. read_output
(filenames)Override to implement reading outputs from disk. read_process_write
(tod)Reads input, executes any processing and writes output. restart_iteration
()Re-start the iteration. setup
([requires])First analysis stage of pipeline task. show_params
()Show all parameters that can be set and their default values of this task. stop_iteration
([force_stop])Determine whether to stop the iteration. subset_select
(tod)Data subset select. write_output
(output)Method for writing time ordered data output.