tlpipe.timestream.ps_fit.PsFit

class tlpipe.timestream.ps_fit.PsFit(parameter_file_or_dict=None, feedback=2)[source]

Calibration by strong point source fitting.

This works by minimize

\[\chi^2 = \| V_{ij}^{\text{obs}}(t + \Delta t) - G_{ij} V_{ij}^{\text{sim}}(t) \|^2\]

Its solution is

\[G_{ij} = \frac{V_{ij}^{\text{sim} \dagger} V_{ij}^{\text{obs}}}{V_{ij}^{\text{sim} \dagger} V_{ij}^{\text{sim}}}\]

Attributes

cacheable Override to return True if caching results is implemented.
embarrassingly_parallelizable Override to return True if next() is trivially parallelizeable.
history History that will be added to the output file.
iteration Current iteration when iterable is True, None else.
params_init
prefix
__init__(parameter_file_or_dict=None, feedback=2)[source]

Methods

cast_input(input) Override to support accepting pipeline inputs of various types.
copy_input(tod) Return a copy of tod, so the original tod would not be changed.
data_select(tod) Data select.
finish() Final analysis stage of pipeline task.
next([input]) Should not need to override.
process(ts)
read_input() Method for reading time ordered data input.
read_output(filenames) Override to implement reading outputs from disk.
read_process_write(tod) Reads input, executes any processing and writes output.
restart_iteration() Re-start the iteration.
setup([requires]) First analysis stage of pipeline task.
show_params() Show all parameters that can be set and their default values of this task.
stop_iteration([force_stop]) Determine whether to stop the iteration.
subset_select(tod) Data subset select.
write_output(output) Method for writing time ordered data output.